Knowledge Mining Biological Network Models
نویسنده
چکیده
In this talk we survey work being conducted at the Centre for Integrative Systems Biology at Imperial College on the use of machine learning to build models of biochemical pathways. Within the area of Systems Biology these models provide graph-based descriptions of bio-molecular interactions which describe cellular activities such as gene regulation, metabolism and transcription. One of the key advantages of the approach taken, Inductive Logic Programming, is the availability of background knowledge on existing known biochemical networks from publicly available resources such as KEGG and Biocyc. The topic has clear societal impact owing to its application in Biology and Medicine. Moreover, object descriptions in this domain have an inherently relational structure in the form of spatial and temporal interactions of the molecules involved. The relationships include biochemical reactions in which one set of metabolites is transformed to another mediated by the involvement of an enzyme. Existing genomic information is very incomplete concerning the functions and even the existence of genes and metabolites, leading to the necessity of techniques such as logical abduction to introduce novel functions and invent new objects. Moreover, the development of active learning algorithms has allowed automatic suggestion of new experiments to test novel hypotheses. The approach thus provides support for the overall scientific cycle of hypothesis generation and experimental testing. Bio-Sketch: Professor Stephen Muggleton FREng holds a Royal Academy of Engineering and Microsoft Research Chair (2007-) and is Director of the Imperial College Computational Bioinformatics Centre (2001-) (www.doc.ic.ac.uk/bioinformatics) and Director of Modelling at the BBSRC Centre for Integrative Modelling at Imperial College. Prof. Muggleton's career has concentrated on the development of theory, implementations and applications of Machine
منابع مشابه
Identifying causal structure in a biological neural network
JADE-AI Support for Debugging Java Programs p. 62 Data and Knowledge Mining Principles for Mining Summaries Using Objective Measures of Interestingness p. 72 From Data Mining to Rule Refining p. 82 What's New? Using Prior Models as a Measure of Novelty in Knowledge Discovery p. 86 Parallel Mining of Association Rules with a Hopfield Type Neural Network p. 90 Constraint Satisfaction and Optimiza...
متن کاملPerformance evaluation of chain saw machines for dimensional stones using feasibility of neural network models
Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کاملReconstruction of Gene Regulatory Networks from Temporal Microarray Data Using Order Estimation Criteria and Artificial Neural Networks
Gene regulatory networks allow us to study and understand genes’ roles in biological processes. Among others, regulatory networks help to identify pathway initiator genes and therefore potential drug targets. In this paper, we discuss mining temporal microarray data for regulatory network information. For this study we have used simulated data in order to be able to verify our results. The data...
متن کاملBiological Models for Protecting Different Land Use in Arid Areas China
There are more than 750 counties in 13 provinces and autonomous regionsconstituting 30% of China lands which are facing serious problem of desertification. Theseareas are mainly distributed in arid, semi-arid and dry sub-humid areas in the western part ofNortheast China, North central china and most of northwest china. Biological methods are theultimate way for drift sand stabilization and a fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010